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ABSTRACT

Poisson Matrix Factorization for TV Recommendations.

(May 2021)

Ashley King, Appalachian State University

Appalachian State University

Thesis Chairperson: R. Mitchell Parry, Ph.D.

Recommendation systems are becoming more and more popular within e-commerce

websites to help drive user engagement. It is not just limited to e-commerce though, websites

such as Netflix or Spotify utilize recommendation systems to better engage users in movies and

TV shows, or music. This thesis explores the mathematics and assumptions behind recom-

mendation systems, such as how data is distributed and different algorithms used. The thesis

then performs a case study on Reddit TV show data to build a recommendation system. To

improve the results of the recommendation system, this thesis makes changes to a Python Rec-

ommendation System Library to enable Poisson Factorization. The changes proposed can be

integrated into the existing Python library, helping other programmers make more meaningful

and accurate recommendations.
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Chapter 1

Introduction

Recommendation systems have revolutionized the way e-commerce and streaming services op-

erate by increasing user interaction while decreasing the amount of information presented to

users. Users typically have a short attention span while scrolling through websites, so it is vital

to only show information that is relevant to the user. According to Netflix, users often lose

interest while scrolling through their feed after 60 to 90 seconds [7]. Netflix estimates that over

80% of total hours watched is attributed to their recommendation system. The remaining 20%

screen time is attributed to searching or other lookup functions [7].

Recommendation systems can take on many forms, but have the same central goal of

recommending items to users based on their existing preferences. The definition of user, item,

and preference can vary by application. For example, Netflix uses a recommendation engine

which recommends movies or TV shows (items) to their subscribers (users) based on previous

shows or movies they watched (preference). Amazon recommends products (items) to shoppers

(users) based on their previous purchases (preferences). Spotify also utilizes recommendation

systems to recommend music (items) to their music listeners (users) based on previous music

they have listened to (preferences).

This paper outlines recommendation systems, improves upon an existing library, and

evaluates a SubReddit TV Show recommendation system based upon the number of comments

left by a user.
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Chapter 2

Recommendation Background

2.1 History of Recommendation Systems

A recommendation system aims to recommend the most relevant items to a user. Famous

examples are the Netflix recommendation system, which aims to recommend TV shows and

movies to users, or Spotify, which recommends songs based on the users listening habits.

One of the earliest machine recommendation systems was presented in 1979, and out-

lined how to train computers to treat users as “distinct personalities, goals, and so forth”[15].

Rich created a basic collaborative filtering algorithm, called Grundy, to make library recom-

mendations. The system was very basic, taking in user input in the form of their name to

determine if they had used the library before. If they had not, the system would ask them to

input personally descriptive adjectives, such as “unconventional open direct honest humorous

persistent adventurous.” Based on this input, for example since the user input “humorous,”

it would recommend comedy novels. Or since the user also inputted “adventurous,” it might

recommend action or mystery novels.

This system was very basic, and there were issues with having users manually input

words to describe themselves. They might not choose the right words that encapsulate what

novels they prefer, or the system might not have recommendations for a specific word. But this

laid the framework for improvements and for future recommendation systems.

2



3

2.2 Types of Recommendation Systems

Recommendation systems provide meaningful recommendations to users based on previous

data. What varies is how these recommendations are generated. Some differences in types

of recommendation systems are if the relationships between items or users is utilized to make

recommendations, or if “informative content descriptors” are utilized to make recommenda-

tions [4]. For example, collaborative filtering explores the relationships between users to provide

recommendations, while content-based filtering explores the relationship between items using

descriptive features [4].

Collaborative filtering

Collaborative filtering provides recommendations based upon the opinions of similar users [4].

In the above example, User 1 interacted or showed preference for Items 1 and 2. User

2 interacted or showed preference for Items 4 and 5. To generate a recommendation to User 3

for what item they would like, the system would explore which users are most similar to User

3. Since User 3 has interacted with Item 1 in the past, the recommendation system would

calculate that there is a similarity between User 1 and User 3. This is because User 1 showed a
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preference for Item 1, and User 3 also showed a preference Item 1. So the recommender system

would make a recommendation of Item 2 to User 3.

This is similar to something seen on an e-commerce website that says “Other shoppers

bought...”

To calculate the best recommendation for a certain user, the algorithm determines the

similarity between the current user and all other users. One common way to calculate similarity

between users is the Cosine Similarity. As computed by the Surprise Library, a python library

for recommendation systems, it is defined as the similarity between a user u and other user v

where I u,v is a set of items both user u and user v rated.

cosine sim(u, v) =

∑
i∈Iu,v

ruirvi√ ∑
i∈Iu,v

r2ui

√ ∑
i∈Iu,v

r2vi

Where

• cosine sim(u, v) is the similarity between user u and user v,

• I u,v is the set of indexes for items rated by both u and v, and

• rwi is the rating of item i for user w (u or v in this example)

If the two users or items to compare are completely equal (have same user-item inter-

actions), the cosine similarity function will return 1. Two users or items that are completely

unalike and have nothing in common will return 0 for the similarity.

Based upon the most similar users, the recommendation system recommends items that

the similar users also recommended. In the above example, since User 3 was most similar to

User 1, the recommendation system would recommend items that User 1 liked.

Content-Based Filtering

Unlike collaborative filtering, content-based filtering makes predictions based on the similarity

of each item. This is done using metadata about items, such as item descriptions. [5]
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In this example, the content-based system would recommend items based on the de-

scriptive information of each item, which is the movies genre.

User A interacted with or liked Movie A, which had the genre of Action. When providing

future recommendations to User A, the system would recommend movies that have genres

either of Action or similar to Action. This is because the recommender system places a high

importance on relationships between items. It would not take into account anything User B

liked.

For User B, the same logic would apply. Since User B interacted with a Mystery movie,

the recommender system would recommend other mystery movies to the user. For example, it

might recommend Movie B or Movie E, since they both have the same genre.

This is similar to what e-commerce sites would label “Similar Products...”.

Hybrid Recommendation Systems

A hybrid recommendation system takes into account both user and item importance. One

way to create a hybrid recommendation system is to first run a content-based recommender



6

system, then a collaborative recommender system, and combining or averaging the results[9].

Another approach is to combine them into one algorithm, taking into account both user and

item preferences, with any and all item descriptors. The hybrid approach is not just limited to

content-based or collaborative systems, it can combine any algorithm used for Recommender

systems.

Netflix is a prime example of a hybrid recommendation system. Netflix not only relies

on the genre of a movie (content-based), but also what movies were watched by other users

(collaborative).

2.3 Approaches to Recommendation systems

Once a specific type of system is identified (either collaborative, content-based, or hybrid), an

appropriate approach is then taken. The more traditional approach is a memory approach,

where recommendations are made solely based on only the user or item similarities. A more

modern approach is a model-based approach, where more information is provided to provide

more meaningful recommendations [3].

Memory approach

“Memory based ... utilizes the entire user-item data to generate predictions”[3]. This uses

only the explicit user-item data to make recommendations by calculating the similarity

between each user and item. The memory approach uses statistical methods to determine

the similarity between users. An example is K-Nearest-Neighbors. K-Nearest-Neighbors

calculates the distance between all users in the dataset [3]. The model then chooses the

most similar users, for example the top 5 or 10 most similar users. Then, the model

determines what items are most commonly preferred among similar users, and makes a

recommendation based upon the most commonly preferred item.

The advantages to this approach are that it is easy to implement (only the distance

per each user and/or every item is calculated), and the results are easy to understand.

The only hyper parameter to tune with K-Nearest-neighbors is the number of neighbors.

Advanced knowledge is not needed to explain/build the system.
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The disadvantages are that the memory approach’s performance can be lower due to

missing information about each user and each item. Also, when there are more users and

more items introduced into the dataset, this can drastically increase the space complexity

of the model (since distances between every user and/or every item must be stored).

Model-Based Approach

The model based approach, rather than computing similar users, first develops a model

of the users ratings [19]. This is different than the Memory-Based approach because it

takes more of a probabilistic approach to maximize the likelihood of the expected rating

given the entire dataset. An example of an algorithm used for the Model-Based approach

is a Bayesian Network Model. The Bayesian Network Model formulates a probabilistic

model to maximize the likelihood of the output variable, the expected rating [19].

The model-based approach is more complicated to understand, and the results are harder

to interpret. Instead of being able to explain that a user is similar to another user, the

model-based approach weighs many factors, such as in the case of Netflix, their browsing

habits, age, gender, information about each movie or TV show, and also how similar they

are to other users.

An advantage to taking the model-based approach is that dimensionality reduction tech-

niques can be used to reduce the space complexity of the algorithm. Techniques such

as Principal Components Analysis can determine the most important components within

the data, and ignore the rest. This drastically decreases the amount of data that needs

to be parsed, which can decrease the amount of time needed to create a recommendation.

[3] found that on average, the model-based approach has a higher accuracy then the

memory approach.

2.4 Scoring Algorithms

In order to quantify how well a model is performing, a scoring algorithm is used to evaluate

the difference from the expected recommendation to the actual recommendation. Based upon
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the distribution of the data, different scoring algorithms need to be used or the result may be

misinterpreted.

A set of ratings, R is considered, which contains ratings, rui for user u and item i. The

R might not contain a rating for every user-item pair. A recommendation model that predicts

a rating for a certain user u and item i can be expressed as r̂ui. The error is the difference

between the two:

εui = rui − r̂ui

The difference in each scoring algorithm is how high the penalty should be based upon

the error term. The most common scoring algorithms for recommender systems are root mean

squared error (RMSE) and mean absolute error (MAE). Another scoring algorithm, FCP, does

not use the above error term but rather is calculated using fraction of concordant pairs.

RMSE: Root Mean Squared Error is calculated as the square root of the sum of errors

squared. More formally, it is calculated [11] as:

RMSE =

√
1

|R|
∑
rui∈R

(rui − r̂ui)2.

where |R| is the total number of ratings.

MAE: Mean Absolute Error is calculated as the arithmetic average of absolute errors.

More formally, it is calculated as:

MAE =
1

|R|
∑
rui∈R

|rui − r̂ui|

where, again, |R| is the total number of ratings.

FCP: Fraction of Concordant Pairs: A common disadvantage of MAE and RMSE is that

the scoring measures are not specifically designed for ordinal values. By computing aver-

ages, these measures assume that the spaces between ratings are equal. For example, the

difference between a 5 and 4 star rating is not the same as the difference between a 2 and

1 star rating. Also, it does not take into account that different users can have different
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rating scales. For example, user A rates on the full range from 1-5, while user B only rate

items on a 3-4 range. [11]

FCP, which stands for Fraction of Concordant Pairs, is one proposed solution that deter-

mines what fraction of pairs are in the correct order, relative to each other, ignoring the

specific values (ratings) provided.

Given a set of predicted ratings, R̂ and the original set of ratings, R, [11] defined the

number of concordant pairs for an individual user k as

nuc = |{(i, j)|r̂ui > r̂uj and rui > ruj}|

nc =
∑
u

nuc

where i, j are pairs of items that user u rated. The number of discordant pairs is calculated

similarly,

nud = |{(i, j)|r̂ui ≥ r̂uj and rui < ruj}|

nd =
∑
u

nud

This is calculated for for every user in the matrix, and FCP can then be calculated as:

FCP =
nc

nc + nd

FCP is better suited for recommendation algorithms, as it takes into account that data

may not be nominal, that rating scales differ per user, and does not amplify outliers.

2.5 Open Source Software

Building a recommendation system can be easily accomplished using open-source software and

libraries. This thesis utilized the Python programming language and libraries to aid with the

usage of data, web scraping, and machine learning.
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Python

Python is an interpreted, high-level and general-purpose programming language. Python’s

design philosophy emphasizes code readability with its notable use of significant indentation [14].

Python is often used for scientific purposes, as it is easy to read, and can be used alongside

other languages, such as C, to optimize performance.The Python Package Index, PyPi, hosts

thousands of modules to extend the usage of Python. They are not limited to scientific and

numeric computing, but also encompass web and internet development, and database access.

Scikit-learn

Scikit-learn is a free machine learning library for the Python programming language. Scikit-

learn is commonly used because it is simple and efficient, easily reusable, and open-source.

surprise

Surprise (Simple Python Recommendation System) is an open-source Scikit recommendation

system library for python. Surprise mainly deals with explicit rating data, which is data that

ratings are known before the model is built. The other type of data, implicit data, is gathered

from users habits, such as time on the site, age, and other demographics.

This thesis uses surprise as the recommendation system library because it is commonly

used, well documented, and gives control over the library. With Surprise, different recommenda-

tion algorithms can be used, their hyperparameters tuned, and evaluated using different scoring

algorithms. Surprise also includes built-in datasets and custom-built datasets which are used to

build and evaluate recommendation models. Surprise also encompasses most recommendation

algorithms, which includes SVD (Singular Value Decomposition), KNN (K-Nearest-Neighbors),

and many others. Also included in surprise are ways to evaluate model performance, which en-

compasses the scoring algorithms mentioned above. Using surprise, recommendation data can

be loaded, a model built, and evaluated, all using one library.



Chapter 3

Mathematical Prior Work

In general, recommendation systems are machine learning algorithms that have been fine tuned

to discover meaningful relationships between users and items. To do so using preferences,

data must be provided to define the relationship between users and items. Machine Learning

algorithms can then use this data to discover relationships and provide meaningful recommen-

dations.

The recommendation data can be thought of as a set of ratings:

R = {rkl| where user k has rated item l}

Or, a hypothetical ratings matrix:

R =



r11 r12 . . . r1q

r21 r22 . . . r2q
...

...
. . .

...

rp1 rp2 . . . rpq


where p is the number of users, q is the number of items, and many of the entries are missing

because each user only rates a small fraction of the item. We define |R| as the number of

ratings (not missing) in the matrix. More specifically, for each user item preference, the ratings

matrix may be similar to the following matrix, which describes how much users liked a movie

on a scale of 1-5

11
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Avengers Interstellar Jurassic Park

Matt 1 5 3

Sarah 2 3 3

John 4 1 4

Table 3.1: Example ratings matrix

This shows that Matt (user) rated the Avengers (item) 5 stars (preference). Mathemat-

ically, relationships between users and items are explored to form meaningful recommendations.

To form a recommendation for a user (in this example, person), the recommendation computes

predicted preferences (in this example, movie rating) for each item (in this example, movie). A

recommendation is then made based upon the highest preferences.

These same data could be represented as a data matrix and target vector:

X =


k(1) l(1)

...
...

k(n) l(n)

 =


— x (1)> —

...

— x (n)> —

 y =


y(1)

...

y(n)


where the first column contains the user indexes, the second column contains the item indexes

and the target vector contains the ratings. That is, y(i) = rk(i)l(i) . The previous example might

look like this:

X =



1 1

1 2

1 3

2 1

2 2

2 3

3 1

3 2

3 3



y =



1

5

3

2

3

3

4

1

4


One way to create a recommendation system is to model y as a function of the user and

item in x , ŷ = fθ(x ). Models differ in the way they calculate predicted ratings (preferences)

and in their parameters, θ. One way to estimate the parameters is to derive cost functions that
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can distinguish between better and worse choices for the parameters.

3.1 Maximum Likelihood Estimation

Maximum likelihood estimation selects the parameters for a model that maximize the probabil-

ity of observing the output given the parameters. This is accomplished by including parameters,

θ, which defines the relationship between the input and output variables. The Likelihood func-

tion takes on the following form:

L(θ) = P (y |θ)

The parameters are estimated as the following:

θ̂MLE = argmax
θ

P (y |θ)

This is read as “Select the θ variables that maximize the likelihood of the output

variable, y , given the parameters θ”. Since samples are independent and identically distributed,

the distribution of the data set is the product of the distribution for each sample. This is

computed for every individual y variable, so this equation is rewritten as

θ̂MLE = argmax
θ

n∏
i=1

P (y(i)|θ)

P (y(i)|θ) differs based upon the distribution of the the correct values of y(i) given the model,

and this thesis covers the normal distribution and Poisson distribution. To further reduce this

equation, the log of the probability is taken. The cost function is defined as the negative log

likelihood:

JMLE = −
n∑
i=1

logP (y(i)|θ)
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3.2 Maximum a Posteriori (MAP) Estimation

As opposed to MLE which treats the parameters as fixed but unknown, maximum a posterior

(MAP) estimation treats the parameters as random variables with a prior distribution. The

probability of the θ parameters given the ouputs y is the following:

P (θ|y) =
P (y |θ)P (θ)

P (y)

This equation can be described as [10]:

Posterior =
likelihood ∗ prior

evidence

Since P (y) is not dependent upon θ, it can be removed from the maximization:

θ̂MAP = argmax
θ

P (y |θ)P (θ)

= argmax
θ

(
n∏
i=1

P (y(i)|θ)

)
P (θ)

= argmax
θ

log

(
n∏
i=1

P (y(i)|θ)

)
P (θ)

= argmax
θ

n∑
i=1

logP (y(i)|θ) + logP (θ)

The cost function for the MAP estimate can be seen as a regularized version of the MLE

cost. It includes the prior distribution of θ to penalize the selection of parameter values that

are not likely:

JMAP = −
n∑
i=1

logP (y(i)|θ)− logP (θ) (3.1)

The types of distributions considered in this thesis include Gaussian and Poisson for the like-

lihood, Py(y |θ), and the Gaussian distribution for P (θ). The recommendation system library

utilized in later chapters only utilizes a normal distribution, but others such as the Laplace
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distribution could be considered in future work.

3.3 Likelihood Functions

Gaussian Distributed Likelihood

When the likelihood function, P (y |θ), follows a Gaussian distribution, the result is least squares

regression. Least squares attempts to minimize the sum of squared errors between the model’s

predictions and expected output. For example, linear regression uses ŷ = b + w>x . A single

sample, ŷ(i) from the ŷ vector can then be modeled as the following:

y(i) = ŷ(i) + ε(i)

Where ε(i) is random noise that follows a Gaussian distribution, denoted by ε ∼ N (0, σ2).

Since ε follows a normal distribution, it also means that y follows a normal distribution of

y ∼ N (ŷ, σ2). The likelihood function is then modeled as a normal distribution based on the

output variables, or

J = −
n∑
i=1

logP (y(i)|θ)

= −
n∑
i=1

logN (y(i); ŷ(i), σ2)

= −
n∑
i=1

log
1

σ
√

2π
e−

(y(i)−ŷ(i))
2

2σ2

= −
n∑
i=1

(
log

1

σ
√

2π
−
(
y(i) − ŷ(i)

)2
2σ2

)

Ignoring additive terms that do not depend on ŷ, we have a scaled version of the sum of squared

errors:

JSSE =
1

2σ2

n∑
i=1

(
y(i) − ŷ(i)

)2
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Note that σ is not dependent upon ŷ but it will be useful to define the regularization coefficient

in a later section.

Poisson Distributed Likelihood

The Poisson distribution has a single parameter λ, where λ is both the mean and variance. The

Poisson distribution is often used to describe observed counts of events given a time period.

For example, the number of births per hour, or the number of visitors of a website in a given

hour. For example, Poisson regression models ŷ = eb+x>x . More generally, when the likelihood

function follows a Poisson distribution:

ŷ = λ,

and the likelihood is constructed:

P (θ|y) =
n∏
i=1

P (y(i)|θ)

=
n∏
i=1

POIS(ŷ(i))

=
n∏
i=1

λ(i)y
(i)
e−λ

(i)

y(i)!

The cost function can be derived as the negative log likelihood ignoring additive terms

that do not depend on ŷ:

JPOIS = − log

n∏
i=1

(
λ(i)
)y(i)

e−λ
(i)

y(i)!

=

n∑
i=1

λ(i) − y(i) log(λ(i))

Again, consult Appendix A for the mathematical proof.
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3.4 Priors

Gaussian Prior

We model the parameters as independent and identically distributed Gaussian random variables:

θj ∼ N (0, τ2)

The prior distribution for all parameters, then, is the following:

P (θ) =

m∏
j=1

N (θj ; 0, τ2)

=

m∏
j=1

1

τ
√

2π
e−

θj
2

2τ2

The cost function, again, is the negative log of this probability ignoring additive terms that do

not depend on θ:

JL2 = − logP (θ)

=
1

2τ2

m∑
j=1

θj
2

Summary

To build a cost function for the MAP estimate, a cost based on the likelihood and a penalty

based on the prior are combined into one equation. For example, if the likelihood function

follows a Gaussian distribution and the prior is Gaussian distributed, we get the cost function

for Ridge Regression: JRIDGE = JSSE + JL2 :

JRIDGE =
1

2σ2

n∑
i=1

(
y(i) − ŷ(i)

)2
+

1

2τ2

m∑
j=1

θj
2
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If the likelihood function instead was a Poisson Distributed likelihood and the prior was a

Normal prior JPL2 = JPOIS + JL2

JPL2 =
n∑
i=1

(
λ(i) − y(i) log(λ(i))

)
+

1

2τ2

m∑
j=1

θj
2

3.5 Regularization

Models are susceptible to over-fitting when the model is too complex or there is too little

data. In these cases, the model is well trained for the training data, but not well trained in

general, and for future use. This can lead to a high performance on the training data, but bad

performance on the testing and production level data sets. Using a prior on the parameters

imposes a preference for simpler models, known as regularization.

Recalling from above, an equivalent form of the Ridge Regression cost function looks

like this after scaling by 2σ2:

JRIDGE =

n∑
i=1

(
y(i) − ŷ(i)

)2
+
σ2

τ2

m∑
j=1

θj
2

This equation can be further simplified in terms of regularization. Instead of stating σ2

τ2
,

which is the ratio between the output variance and the parameter variance, this is defined as

λ. Note that this is a different variable and concept than the λ with Poisson regression, giving

us a final form of

JRIDGE =
n∑
i=1

(
y(i) − ŷ(i)

)2
+ λ

m∑
j=1

θ2j (3.2)

Here λ indicates the “regularization strength,” that is, how much we prefer simpler models.

3.6 Gradient Descent

Gradient descent is a general algorithm for adapting parameters to reduce the cost. The gradient

of a function provides the direction of steepest ascent, where the goal is to take small steps

“down the gradient,” to find a local minimum. The gradient can be computed by taking the
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partial derivative of the cost function with respect to each parameter, or more generally:

∂J

∂θ
=


∂J
∂θ1
...

∂J
∂θm


Gradient descent can then be performed by taking small steps of size η away from the gradient,

or

θj ← θj − η
∂J

∂θj

This can be read as the next value for θ can be calculated as the previous value minus some

learning rate, η, times the derivative of the cost function. As the learning rate, η, increases,

larger steps are taken. This can lead to overshooting the solution, which can lead away from

the solution. As η decreases, smaller steps are taken, which can take more time to reach the

local minimum.

Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) is a type of Gradient Descent that instead of computing

the gradient with the entire data set, updates the parameters with one sample at a time. The

cost function can be written as the sum of the cost for each observation, or

J =

n∑
i=1

J (i)

The gradient of J can be written as the sum of the gradient for each sample:

∂J

∂θj
=

n∑
i=1

∂J (i)

∂θj

Instead of computing the gradient of J , SGD computes it on one sample i, updating the

parameters each time:

θj ← θj − τ
∂J (i)

∂θj
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Ridge Regression with Stochastic Gradient Descent

To apply Stochastic Gradient Descent to linear regression, we first much write the cost function

as a sum of single-sample cost functions. Recall that for linear regression ŷ = w>x :

J =
1

2σ2

n∑
i=1

(
y(i) − ŷ(i)

)2
+

1

2τ2

m∑
j=1

wj
2

Or, equivalently by scaling by σ2:

J =
1

2

n∑
i=1

(
y(i) − ŷ(i)

)2
+

σ2

2τ2

m∑
j=1

wj
2

=

n∑
i=1

1

2

(
y(i) − ŷ(i)

)2
+

σ2

2nτ2

m∑
j=1

wj
2


J (i) =

1

2

(
y(i) − ŷ(i)

)2
+

σ2

2nτ2

m∑
j=1

wj
2

The partial derivatives of the single-sample cost are the following:

∂J (i)

∂b
= −

(
y(i) − ŷ(i)

)
∂J (i)

∂wj
= −

(
y(i) − ŷ(i)

)
x
(i)
j +

σ2

nτ2
wj

Using λ = σ2/(nτ2) for the regularization coefficient, the update rules are the following:

b← b+ η
(
y(i) − ŷ(i)

)
wj ← wj + η

(
(y(i) − ŷ(i))x(i)j − λwj

)

Poisson Regression with Regularization using Stochastic Gradient Descent

To apply gradient descent to Poisson regression, the derivative of the cost function is taken.

The same general rule as above is used but instead, ŷ is calculated differently. For clarity,

the regularization parameter λ is renamed to λREG. Recall that Poisson regression models
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ŷ = eb+w>x (i)
.

J =
n∑
i=1

(
λ(i) − y(i) log(λ(i))

)
+

1

2τ2

m∑
j=1

wj
2 (3.3)

=
n∑
i=1

λ(i) − y(i) log(λ(i)) +
1

2nτ2

m∑
j=1

wj
2

 (3.4)

J (i) = λ(i) − y(i) log(λ(i)) +
1

2nτ2

m∑
j=1

wj
2 (3.5)

The partial derivatives are the following:

∂J (i)

∂b
= λ(i) − y(i) (3.6)

∂J (i)

∂wj
= (λ(i) − y(i))x(i)j +

1

nτ2
wj (3.7)

Using λREG = 1/(nτ2), the updates are:

b← b+ η
(
y(i) − λ(i)

)
(3.8)

wj ← wj + η
(

(y(i) − λ(i))x(i)j − λREGwj
)

(3.9)

Notice that these updates are equivalent to the updates for ridge regression except with ŷ(i)

replaced by λ(i).

3.7 Recommendation Models

A recommendation model can be defined by an equation for the ratings, r̂kl, the probability

distribution for r, and the prior on the parameters. First we define a baseline model:

r̂kl = µ+ uk + vl,

where µ is the mean item rating, uk is the bias for user k, and vl is the bias for item l. µ can

be calculated as the mean rating over the entire data set. The the vectors containing the user
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(u) and item (v) biases are calculated using gradient descent.

To determine how each variable is updated, the distribution of the data is defined.

P (r |u , v) =
∏
rkl∈R

N (rkl; r̂kl, σ
2)

=
∏
rkl∈R

N (rkl; r̂kl, σ
2)

This means that the output variable, given a user k and item l, follows a normal distribution

with mean µ+ uk + vl. The cost function, J can be generalized as the sum of squared errors:

J =
∑
rkl∈R

1

2
(rkl − r̂kl)2 +

λ

2

∑
i

u2i +
λ

2

∑
j

v2j


J (kl) =

1

2
(rkl − r̂kl)2 +

λ

2

∑
i

u2i +
λ

2

∑
j

v2j

with partial derivatives:

∂J (kl)

∂µ
= −(rkl − r̂kl)

∂J (kl)

∂uk
= −(rkl − r̂kl) + λuk

∂J (kl)

∂vl
= −(rkl − r̂kl) + λvl

and update rules:

µ← µ+ η (rkl − r̂kl)

uk ← uk + η (rkl − r̂kl − λuk)

vl ← vl + η (rkl − r̂kl − λvl)
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Having a bias per user and bias per item vector does not properly express the relation-

ships per each user-item. To better explain the relationships in the data, matrix factorization

techniques, such as Singular Value Decomposition, are utilized.

Gaussian Matrix Factorization

Singular Value Decomposition is a Linear Algebra technique to reduce the explained deviance

in data to a smaller dimension. The SVD algorithm rose to popularity for recommendation

when Simon Funk utilized it for a Netflix prize challenge to see what collaborative filtering

algorithm is best to predict ratings for future films.

Recommendation Models use similar matrix factorization technique to SVD by repre-

senting each user and item as a vector. The dot-product between a user and an item indicates

the preference of a user for an item:

r̂kl = µ+ uk + vl + p>k q l,

where

• pk: The vector describing user k,

• q l: The vector describing item l,

• uk: The bias for user k, and

• vl The bias for item l.

The length of the user/item vectors is a hyper-parameter (number of factors) that are

tuned to capture the most amount of knowledge to approximate the original matrix. For

example, in a user-movie data set, the number of factors is used to effectively capture what

“type” of a movie a given user might like. If there was only 1 factor, the factor gauges one range

of genre a user might like or dislike. For example, the one factor could be used to capture if a

user preferred horror or comedy. Then, as another factor is added, another axis of preference

is added. For example, if 2 factors were used, the first factor might encapsulate horror versus

comedy while the next vector encapsulates fantasy versus history.
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When there are a low number of factors, this results in a compressed version of the

matrix, with losses. As the number of factors increase, the original matrix can be better

represented, but it requires more storage and computation.

The recommendation algorithm attempts to find latent dimensions that minimizes the

sum-squared distance to the target matrix, R [18]. The q vector is the latent representation

for an item, the p vector is the latent representation for a user.

The extent to which a user interacts with (whether positive or negative) is based upon

the q and p vectors. If the result of the qTp is near 0, there is little to no interaction between

that user and item. In that case, the prediction is solely based upon the baseline measures,

which are the µ, u, and v which are per each user and item. But if the result of q>p is a positive

number, there is a positive interaction between that user and item, resulting in a higher rating.

If the result of q>p points is a negative number, there is a negative interaction between that

user and item, resulting in a lower rating. The recommendation algorithm aims to find the

most optimal vectors to maximum the likelihood of the output variable [12].

Cost Function and updates for Gaussian Matrix Factorization

A y value in SVD including user biases, item biases, and a mean rating can be calculated as

R̂ = PQ> + u + vT + µ

r̂kl = pk
Tq l + uk + vl + µ

The cost can then be modeled as the Sum of Squared Errors.

J =
1

2

∑
rkl∈R

(
(rkl − r̂kl)2 + λu2k + λv2l + λ‖pk‖2 + λ‖q l‖2

)
J (kl) =

1

2

(
(rkl − r̂kl)2 + λu2k + λv2l + λ‖pk‖2 + λ‖q l‖2

)
,
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with partial derivatives:

∂J (kl)

∂µ
= −(rkl − r̂kl)

∂J (kl)

∂uk
= −(rkl − r̂kl) + λuk

∂J (kl)

∂vl
= − (rkl − r̂kl) + λvl

∂J (kl)

∂pk
= − (rkl − r̂kl) q l + λpk

∂J (kl)

∂q l
= − (rkl − r̂kl)pk + λq l

with update rules:

µ← µ+ η (rkl − r̂kl)

uk ← uk + η (rkl − r̂kl − λuk)

vl ← vl + η (rkl − r̂kl − λvl)

pk ← pk + η ((rkl − r̂kl)q l − λpk)

q l ← q l + η ((rkl − r̂kl)pk − λq l)

Poisson Matrix Factorization

If the expected ratings were instead estimated using a Poisson Distribution,

R̂ = ePQ>+u+v>+µ

r̂kl = ep
>
k q l+uk+vl+µ

The cost function is then defined as

J =
∑
rkl∈R

r̂kl − rkl log(r̂kl) +
λ

2

(
uk

2 + vl
2 + ||pk||2 + ||q l||2

)
J (kl) = r̂kl − rkl log(r̂kl) +

λ

2

(
uk

2 + vl
2 + ||pk||2 + ||q l||2

)
,
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with partial derivatives:

∂J (kl)

∂µ
= r̂kl − rkl

∂J (kl)

∂uk
= r̂kl − rkl + λuk

∂J (kl)

∂vl
= r̂kl − rkl + λvu

∂J (kl)

∂q l
= (r̂kl − rkl)pk + λq l

∂J (kl)

∂pk
= (r̂kl − rkl) q l + λpk

with updates:

µ← µ+ η (rkl − r̂kl)

uk ← uk + η (rkl − r̂kl − λuk)

vl ← vl + η (rkl − r̂kl − λvl)

pk ← pk + η ((rkl − r̂kl)q l − λpk)

q l ← q l + η ((rkl − r̂kl)pk − λq l)

Note that these are the same updates as Poisson Regression and Gaussian Matrix Factorization.

The only thing that changes is how r̂ is calculated.



Chapter 4

Data

This thesis attempts to build a recommendation system for TV shows. Data was collected from

Reddit, an online community that averages 430 million monthly active users [6]. Data from TV

show SubReddits was collected to form a user-item matrix. In the context of recommendation

systems, the users were Redditors, and the items were their interaction with TV show SubRed-

dits. The interaction, or expected rating was measured by how many comments a given user

had left on the SubReddit.

4.1 Web Scraping

Web scraping is the process of extracting data from websites. Web scraping can be accom-

plished manually by navigating to websites and copy/pasting the data. This process can also

be automated, by navigating websites using a “robot,” which is a computing tool to automati-

cally “crawl” a website and download information. Web scraping is often times used to get the

most up to date stock prices, or to get recent posts from a website.

This thesis scraped data using the Reddit API, or Application Programmer Interface,

which provides an easy way to retrieve data from a website. A programmer can place queries

to the website and receive a structured response. The programmer interacts directly with the

website API, which is faster than manually parsing the website.

27
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4.2 Scraping Reddit Data

Reddit

Reddit is an online community where users network in communities called SubReddits, make

posts, and interact with other users. Users, known as Redditors, can create posts, upvote (like)

posts, downvote (dislike) posts, and make comments.

PRAW

PRAW (Python Reddit API Wrapper) is an open-source Python Package that allows simple

access to Reddit’s API. Once a API key is generated through Reddit’s API website, PRAW can

be used to query information from Reddit, such as retrieve comments from a SubReddit. To

download 25 comments from the “Community” SubReddit, the following code would be used:

1 import praw

2

3 reddit = praw.Reddit(

4 user_agent="Comment Extraction (by u/USERNAME)",

5 client_id="CLIENT_ID",

6 client_secret="CLIENT_SECRET",

7 username="USERNAME",

8 password="PASSWORD",

9 )

10

11 for comment in reddit.subreddit("Community").comments(limit=25):

12 print(comment.author)

4.3 Determining suitable SubReddits to scrape

SubReddits are similar to a blog, or a group on Facebook. A SubReddit has a central topic, such

as “News,” or “U.S. Politics.” SubReddits can take on a wide array of topics, but this thesis

focuses specifically on SubReddits based upon TV shows. Some examples are “Brooklyn99” or

“Community.” A list of TV Show SubReddits was queried from wikidot, which included 743

total TV SubReddits [1]:
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id author Subreddit created score

gu7m8qw Stuped1811 adventuretime 1618193380.0 1
gu7m1uv Stuped1811 adventuretime 1618193276.0 1
gu7lhi4 LOL3334444 adventuretime 1618192978.0 2
gu7lcs5 Stuped1811 adventuretime 1618192906.0 1
gu7kpxv hunnyb33˙ adventuretime 1618192557.0 1
gu7klu2 Pap8r-Mango adventuretime 1618192494.0 1

Figure 4.1: Example: /r/adventuretime

A simple script was run to check that all of the SubReddits existed and were up to

date. Some issues found with SubReddits included: they were either deleted or banned, they

were not based on TV shows, or a more up-to-date SubReddit existed. Once all entries were

evaluated and corrected, there were 687 total suitable SubReddits to scrape data from.

For each SubReddit, a query was placed to retrieve a maximum of 1000 comments,

sorted by date created in descending order (Figure 4.1) with the following definitions:

• id: ID of the submission.

• author: The Redditor’s username.

• SubReddit: Fullname of the SubReddit.

• created: Time the submission was created, represented in Unix Time.

• score: The number of upvotes for the comment.
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The data was then saved to a CSV file. After each request, the program waited 2

seconds to obey Reddit’s robot.txt file (a textual form of how long a robot must wait to parse

a given website).

Merging results into triple format

For every SubReddit CSV file, the data was aggregated for each user-item pair. After the data

was aggregated, two separate data files were created:
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Master The master file contained the following rows:

id author created Subreddit NumComments

gtaa7yd platinumgoddess˙12 1617485422.0 12ozmouse 27

gt1bflu Benji1819 1617288587.0 12ozmouse 4

gsw9pmu StingrayOC 1617179929.0 12ozmouse 20

gst8gx2 Ocramtan 1617119312.0 12ozmouse 1

gsnj9j6 MBTHVSK 1616991179.0 12ozmouse 2

gsnj6ct MBTHVSK 1616991117.0 12ozmouse 2

gsc4afm shooterboss 1616791694.0 12ozmouse 7

gsbnto0 Viewbob˙˙true 1616785413.0 12ozmouse 3

t8kka9 lucius42 1617451436.0 Babylon5 3

Triple The triple file contains the following rows:

author Subreddit NumComments

c1daley 1600penn 1

Marb˙Reds 1600penn 3

jsh1138 1600penn 3

Clayburn 1600penn 1

zatch17 1600penn 2

The triple file, which will be used for the recommendation system, included:

• 183,133 total rows

• 155,324 total unique users

• 677 total SubReddits

• Comments created from 2010-2021

• The number of comments range from 1 to 270, with a mean of 2.51

Filtered dataset

The above dataset shows that there was a large number of users commenting on only one

SubReddit which can lead to a badly performing model, as there is possibly low interaction
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between users and SubReddits. To form a dataset with more user-SubReddit interaction, two

subsets of the dataset were created. One subset of the dataset was formed to include only

rows that had a minimum interaction of 2 SubReddits and SubReddits with a minimum of 2

Redditors commenting. The same was repeated for subsets of 4 and 8.

The subset of data with minimum 2 interaction included the following:

• 45624 total rows

• 17836 total unique users

• 630 total SubReddits

• The number of comments range from 1 to 270, with a mean of 3.23

The subset of data with minimum 4 interaction included:

• 10537 total rows

• 1887 total unique users

• 519 total SubReddits

• The number of comments range from 1 to 270, with a mean of 3.9966

The subset of data with minimum 8 interaction included:

• 1100 total rows

• 199 total unique users

• 155 total SubReddits

• The number of comments range from 1 to 207, with a mean of 3.70

Only including Redditors with high interaction and SubReddits with a high number of comments

should produce more accurate results.
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Surprise Library Recommendation

Algorithms

5.1 Recommendation Algorithm

The Surprise library provides the following recommendation algorithms:

Basic Algorithms

The Basic Algorithms package contains two simple models to be used as baseline measures.

Constant The Constant algorithm predicts the mean rating based upon the distribution of

the training set (assumed to be a normal distribution).

The constant algorithm predicts ratings as:.

r̂kl = µ

Where µ is the mean rating of the entire dataset. The data is expected to follow a normal

distribution, N (µ, σ).

Baseline The baseline algorithm is considered the most basic algorithm that learns from each

item and user.
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The baseline algorithm is considered the most basic algorithm that learns from each item

and user. The baseline algorithm predicts ratings as:

r̂kl = µ+ uk + vl

If the user is unknown, then uk is set to 0. If the item is unknown, vl is also set to 0.

5.2 Gaussian Matrix Factorization

In the Surprise library, the SVD algorithm makes a prediction based upon a normal distribution

of the ratings. The biased SVD algorithm predicts ratings as:

r̂kl = µ+ uk + vl + qTl pk

An unbiased SVD algorithm does not take into account user and item bias, and predicts

ratings as:

r̂kl = qTl pk

An unbiased SVD algorithm is known as Probabilistic Matrix Factorization. When used

in conjunction with other models such as Restricted Boltzmann Machines models, Probabilis-

tic Matrix Factorization performed on average 7% better than Netflix’s own recommendation

engine[18].



Chapter 6

Proposed Changes

To build a more accurate recommendation model, this thesis proposes changing the Surprise

Library to include a Poisson Distribution.

6.1 Making changes to the Recommendation Library

The existing Surprise SVD algorithm assumes that the data is normally distributed. (Figure 6.1)

shows the distribution of the Reddit data, which follows a Poisson distribution.

A Poisson Factorization approach for recommendation systems has been proposed but

is not part of the Surprise library [8]. Similar techniques were used to introduce Poisson

Factorization to the Surprise Library.

The Surprise code repository was cloned from GitHub, and changes were made to the

matrix factorization.pyx file. A pyx file is a cython file, which integrates features of C with

Python.

To introduce the choice of having a regular cost versus Poisson cost, the init function

was changed to include a cost parameter.

Yo make predictions, Surprise calculates r̂, or the expected rating, as

1 r_hat = z = (global_mean + bu[u] + bi[i] + dot)

As discussed in earlier chapters, calculating a rating from a Poisson Distributed SVD

can be calculated as

35
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Figure 6.1: Distribution of Reddit data

r̂kl = eµ+uk+vl+qTl pk

To introduce these changes to the Surprise Python library, r̂ was calculated as

1 r_hat = np.exp(z)

. The error term is then calculated as

1 err = r - r_hat

As noted in Chapter 3, the update rules are the same.

Adding Cost per Epoch

Most machine learning libraries include the functionality to print, or display, the cost. Including

this enables a programmer to see if the cost is decreasing over time, and at what rate it is

decreasing. This thesis proposes adding this functionality to Surprise.

For normally distributed data, the cost is calculated as the sum of squared errors. For

a Poisson distribution, the Poisson cost is used, which was calculated in earlier chapters. The

Poisson cost does not converge to 0, it converges to a minimum of r*(np.log(r)-1).

Every epoch, the overall cost is calculated as

cost =
regcost + objcost

number of ratings
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1 if self.cost == ’Poisson’:
2 obj_cost += r*(np.log(r)-1) - (r*z - r_hat)
3 else:
4 obj_cost += err ** 2

Figure 6.2: Computing the cost

This takes into account the cost from the model and the cost from the weights. This was

divided by the number of ratings because as the number of samples increase, the regularization

on the weights should decrease.

Adding this to the Surprise library allows programmers to monitor how their model is

performing over time.



Chapter 7

Testing

In order to show the viability of the framework presented in this thesis, a number of tests were

performed on the framework. This section details the methodology used in those tests and their

results.

7.1 SVD

To ensure that the surprise SVD algorithm was performing as expected, data was generated to

follow how Surprise calculates a rating:

r̂kl = µ+ uk + vl + qTl pk

To simulate the data, the following variables were modified:

• standard deviation of weights

• noise

• number of components

To evaluate the algorithm, the expected cost was calculated before training and after

fitting/predicting. The cost was calculated based upon the distribution of the data.

The cost after fitting the model was expected to be equal to the cost calculated before

training.
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Listing 7.1: The Testing python file.

1 import pandas as pd

2 import numpy.random as n

3 import numpy as np

4 from surprise import SVD

5 from surprise import Dataset

6 from surprise import Reader

7 from surprise import accuracy

8 from surprise.model_selection import train_test_split

9 from matplotlib import pyplot as plt

10 import random

11 import numpy as np

12

13 random.seed(1)

14 np.random.seed(1)

15

16 def svd_sim(std_noise, std_weights, numComponents, mu, cost):

17 numUsers = 100

18 numItems = 100

19 p = np.random.normal(0, std_weights, size=(numUsers, numComponents))

20 q = np.random.normal(0, std_weights, size=(numItems, numComponents))

21 bu = np.random.normal(0, std_weights, size=(numUsers, 1))

22 bi = np.random.normal(0, std_weights, size=(numItems, 1))

23

24 if cost == "poisson":

25 r_hat_ui = np.exp(mu + bu + bi.T + np.dot(p, q.T))

26 r_ui = np.random.poisson(lam=r_hat_ui).astype("float")

27 poiss_cost = np.mean(r_ui*(np.log(r_ui + 1e-6)-1) - (r_ui*np.log(r_hat_ui)

- r_hat_ui))

28 print(f"{poiss_cost}", end = ",")

29 elif cost == "normal":

30 r_hat_ui = mu + bu + bi.T + np.dot(p, q.T)

31 r_ui = np.random.normal(loc=r_hat_ui, scale=std_noise)

32 rmse = np.mean((r_hat_ui - r_ui) ** 2)**0.5

33 print(f"{rmse}", end = ",")

34
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35 # making the ratings into a matrix

36 i, j = np.meshgrid(range(numUsers),range(numItems), indexing=’ij’)

37 r_ui = r_ui.reshape((numUsers*numItems, 1))

38 i = i.reshape((numUsers*numItems, 1))

39 j = j.reshape((numUsers*numItems, 1))

40 matrix = np.concatenate([i, j, r_ui], axis=1)

41 df = pd.DataFrame(matrix, columns=[’author’, ’subreddit’, ’NumComments’])

42 reader = Reader(rating_scale=(1e-6, float("inf")))

43 data = Dataset.load_from_df(df, reader)

44 trainset = data.build_full_trainset()

45 testset = trainset.build_testset()

46 algo = SVD(n_epochs=500, cost=cost, verbose=False, random_state=1, lr_all

=0.001, n_factors=numComponents,

47 reg_all=std_noise ** 2 / (std_weights ** 2 * trainset.n_ratings))

48 algo.fit(trainset)

49 predictions = algo.test(testset)

50

51 r_ui = np.array([p[2] for p in predictions])

52 r_hat_ui = np.array([p[3] for p in predictions])

53 if cost == "poisson":

54 poiss_cost = np.mean(r_ui * (np.log(r_ui + 1e-6) - 1) - (r_ui * np.log(

r_hat_ui + 1e-6) - r_hat_ui))

55 print(f"{poiss_cost}")

56 elif cost == "normal":

57 rmse = np.mean((r_hat_ui - r_ui) ** 2) ** 0.5

58 print(f"{rmse}")

59

60

61 print("normal,0.0,0.5,0,5,",end="")

62 svd_sim(0.0,0.5,0,5,"normal")

63 print("normal,0.0,0.5,10,5,",end="")

64 svd_sim(0.0,0.5,10,5,"normal")

65 print("normal,0.5,0.5,0,5,",end="")

66 svd_sim(0.5,0.5,0,5,"normal")

67 print("normal,0.5,0.5,10,5,",end="")

68 svd_sim(0.5,0.5,10,5,"normal")
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69 print("poisson,1,0.5,0,0,",end="")

70 svd_sim(1,0.5,0,0,"poisson")

71 print("poisson,1,0.5,10,0,",end="")

72 svd_sim(1,0.5,10,0,"poisson")

The results were as follows:

stdnoise stdweights numcomp mu expectedcost actualcost

normal 0.0 0.5 10 5 0.0 0.0055

normal 0.5 0.5 0 5 0.4989 0.4939

normal 0.5 0.5 10 5 0.4995 0.4424

poisson 1 0.5 0 0 0.5314 0.5226

poisson 1 0.5 10 0 0.5137 0.4005

The expected cost and actual cost are nearly identical for all cases. As more components

are used, the actual cost is expected to be less accurate as there are more variables for noise and

error to be present. As more noise is added to the model, the error is expected to be higher.



Chapter 8

Results

To assess the results of the algorithms, a grid search was run (if the algorithm had hyper

parameters). A grid search is used to determine the best combination of hyper parameters to

achieve the highest score. For the purpose of this thesis, the highest FCP score will be used to

determine the best hyper parameters.

The parameters taken into consideration for the grid search were

• Learning rate: [0.01, 0.001, 0.0001, 0.00001]

• Regularization rate: [1.0, 0.1, 0.01, 0.001, 0]

• Number of factors: [100, 75, 50, 25, 10, 5, 2, 1, 0]

• Number of epochs: [100, 300, 500]

• Biased: [True, False]

There are more hyper parameters that Surprise includes, but for the purpose of this

thesis, only the above hyper parameters are evaluated. If a more exhaustive grid search was

completed, the final recommendation model might perform more highly.

The grid search was completed on training data, which included 70% of the original

data. 5 fold cross-validation was performed, which splits the data into 5 equal partitions. For

each partition, the model is fit with the other 4 partitions, and evaluated using the remaining

partition.
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Once the best combination of hyper parameters were found (based on highest FCP

score), the algorithm was evaluated on the test set. The test set included 30% of the data, held

out before training. When evaluating the model, the following metrics were used: FCP, MAE,

and RMSE. (Chi-Squared and Poisson Deviance were also calculated, but not included in final

results).

Listing 8.1: The Grid Search and Test Performance python file.

1 from surprise import SVD, Dataset, Reader, NormalPredictor, BaselineOnly, accuracy
2 from surprise.model_selection import GridSearchCV, KFold
3 from sklearn.model_selection import train_test_split
4 import pandas as pd
5 import random
6 import numpy as np
7
8 # setting random seeds
9 np.random.seed(1)

10 random.seed(1)
11
12 df = pd.read_csv(’triple_all_comments.csv’)
13
14 # This limits the data to authors who have commented in at least ’n’ subreddits and
15 # subreddits with at least ’n’ commenters.
16 min_comments = 0
17 df = df.set_index(’author’).loc[df[’author’].value_counts() >= min_comments].

reset_index()
18 df = df.set_index(’Subreddit’).loc[df[’Subreddit’].value_counts() >= min_comments].

reset_index()
19 print(len(df))
20
21
22 trainset, testset = train_test_split(df, test_size=.30, random_state=1)
23 reader = Reader(rating_scale=(1e-6, float("inf")))
24
25 # this line converts the data into the required format for testing
26 # it is still the same dimensions and same data
27 test_data = Dataset.load_from_df(testset, reader).build_full_trainset().

build_testset()
28 # test_data= t_data.build_full_trainset().build_testset()
29
30 # builds a trainset from our data
31 train_data = Dataset.load_from_df(trainset, reader).build_full_trainset()
32 # train_data = tr_data.build_full_trainset()
33
34
35 # builds train data for surprise.model_selection.GridSearchCV
36 data = Dataset.load_from_df(trainset, reader)
37
38 param_grid = {’n_epochs’: [500, 300, 100],
39 ’lr_all’: [0.01, 0.001, 0.0001, 0.00001],
40 ’reg_all’: [1.0, 0.1, 0.01, 0.001, 0],
41 ’n_factors’: [100, 75, 50, 25, 10, 5, 2, 1, 0],
42 ’random_state’: [1],
43 ’biased’: [False, True]}
44
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45 cv = KFold(n_splits=5, random_state=1)
46 gs = {}
47 for cost in [’normal’, ’poisson’]:
48 param_grid.update({’cost’: [cost]})
49 gs[cost] = GridSearchCV(SVD, param_grid, measures=[’rmse’, ’mae’, ’fcp’, ’chi2

’, ’pois’], cv=cv, n_jobs=-1, joblib_verbose=10)
50 gs[cost].fit(data)
51
52 # best RMSE score
53 print(cost)
54 print("FCP")
55 print(gs[cost].best_score[’fcp’])
56 print(gs[cost].best_params[’fcp’])
57 print("MAE")
58 print(gs[cost].best_score[’mae’])
59 print(gs[cost].best_params[’mae’])
60 print("RMSE")
61 print(gs[cost].best_score[’rmse’])
62 print(gs[cost].best_params[’rmse’])
63 print("CHI2")
64 print(gs[cost].best_score[’chi2’])
65 print(gs[cost].best_params[’chi2’])
66 print("POIS")
67 print(gs[cost].best_score[’pois’])
68 print(gs[cost].best_params[’pois’])
69
70 df = pd.DataFrame(data=gs[cost].cv_results)
71 df.to_csv(f’cv_results_{cost}_min_comments_{min_comments}.csv’, index=False)
72
73 find_best(["normal"])
74 find_best(["poisson"])
75
76 constant = NormalPredictor()
77 baseline = BaselineOnly()
78 svd = gs[’normal’].best_estimator[’fcp’]
79 poisson = gs[’poisson’].best_estimator[’fcp’]
80 results = []
81 for model, name in zip([constant, baseline, svd, poisson], [’constant’, ’baseline’,

’svd’, ’poisson’]):
82 model.fit(train_data)
83 predictions = model.test(test_data)
84 fcp = accuracy.fcp(predictions, verbose=True)
85 rmse = accuracy.rmse(predictions, verbose=True)
86 mae = accuracy.mae(predictions, verbose=True)
87 # The Pearson chi-square statistic:
88 # https://en.wikipedia.org/wiki/Pearson%27s_chi-squared_test#

Calculating_the_test-statistic
89 # pearson = sum((pred.r_ui - pred.est)**2/pred.est for pred in predictions)
90 # The Poisson deviance:
91 # https://en.wikipedia.org/wiki/Deviance_(statistics)#Examples
92 # poisson_deviance = 2 * sum(pred.r_ui * np.log(pred.r_ui/pred.est) - (pred.

r_ui - pred.est)
93 # for pred in predictions)
94 chi2 = accuracy.chi2(predictions, verbose=True)
95 pois = accuracy.pois(predictions, verbose=True)
96 d = {
97 ’model’: name,
98 ’fcp’: fcp,
99 ’rmse’: rmse,



45

100 ’mae’: mae,
101 ’chi2’: chi2,
102 ’pois’: pois,
103 }
104 results.append(d)
105
106 df = pd.DataFrame(data=results)
107 df.to_csv(f’test_results_min_comments_{min_comments}.csv’, index=False)

8.1 Filtered performance of 2 interactions

As discussed above, having users and SubReddits with low interactions can lead to a badly

performing model. One alternative this thesis proposes is to limit the dataset to only include

users who have interacted with at least 2 SubReddits and SubReddits with at least 2 users

interacting with them.

Constant Algorithm

Training and evaluating the Constant Algorithm on the subset of data yielded the following

results:

Score

FCP 0.4549

RMSE 8.4684

MAE 4.9921

Table 8.1: Results of filtered test set performance for Constant Algorithm

The FCP score for the constant algorithm was 0.4549, which we will use to compare

future model performance to.

Baseline Algorithm

The baseline algorithm also does not utilize hyper parameters. Evaluating the Baseline Algo-

rithm on the testset yielded the following results:

The FCP score of 0.5489 was higher than the Constant Algorithm.
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Score

FCP 0.5489

RMSE 6.5363

MAE 2.6836

Table 8.2: Results of filtered test set performance for Baseline Predictor

Gaussian Matrix Factorization

The SVD algorithm within Surprise utilizes hyper parameters, so a grid search was completed

for the normally distributed SVD algorithm. The results are as follows:

score epochs lr reg nfactors biased

FCP 0.5151 100 0.01 0 0 True

RMSE 6.4586 100 0.001 1.0 100 True

MAE 2.6030 500 0.001 0.1 100 True

Table 8.3: Results of grid search for SVD

To evaluate how the recommendation system was performing, the data was then tested

on the test set. The test set includes 30% of the data held out before training. The results were

as follows:

Score

FCP 0.5496

RMSE 7.0264

MAE 2.9825

Table 8.4: Results of test set performance for SVD algorithm

The test set results are similar to the baseline model, but the FCP of 0.5496 was slightly

higher than the baseline model.

Poisson Matrix Factorization

A grid search was completed for the Poisson Matrix Factorization. The results were as follows:

The results of how well the best FCP model performed on the test set are as follows:

The FCP score for the PMF is slightly higher than the Baseline and SVD algorithm.
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score epochs lr reg nfactors biased

FCP 0.5196 500 0.001 0 0 True

RMSE 6.5634 100 0.001 0.1 25 True

MAE 2.4064 500 0.001 0 25 False

Table 8.5: Results of grid search for SVD with Poisson Cost

Score

FCP 0.5591

RMSE 9.2643

MAE 2.9770

Table 8.6: Results of test set performance for PMF

Comparing the results of all algorithms,

FCP RMSE MAE

Constant 0.4549 8.4684 4.9921

Baseline 0.5489 6.5363 2.6836

SVD 0.5496 7.0264 2.9825

PMF 0.5591 9.2643 2.9770

Table 8.7: Results of all models

Comparing results, the PMF algorithm, according to the FCP measure, is performing

the best of the four. The same steps were repeated, but for the subset of data that included

the 4 minimum instead.

8.2 Filtered performance of 4 interactions

As discussed above, having users and SubReddits with low interactions can lead to a badly

performing model. One alternative this thesis proposes is to limit the dataset to only include

users who have interacted with at least 4 SubReddits and SubReddits with at least 4 users

interacting with them.

The same models were evaluated but instead of the full dataset, only the subset of data

that only included authors who have commented on 4 SubReddits and SubReddits with at least

4 commenters was used. The same 70 % 30% train and test set splitting technique was used.
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Constant Algorithm

Training and evaluating the Constant Algorithm on the subset of data yielded the following

results:

Score

FCP 0.4826

RMSE 11.9241

MAE 6.3980

Table 8.8: Results of filtered test set performance for Constant Algorithm

The FCP score for the constant algorithm was 0.482619, which we will use to compare

future model performance to.

Baseline Algorithm

The baseline algorithm also does not utilize hyper parameters. Evaluating the Baseline Algo-

rithm on the testset yielded the following results:

Score

FCP 0.5982

RMSE 9.5770

MAE 3.4836

Table 8.9: Results of filtered test set performance for Baseline Predictor

The FCP score of 0.5982 was higher than the Constant Algorithm.

Gaussian Matrix Factorization

The SVD algorithm within Surprise utilizes hyper parameters, so a grid search was completed

for the normally distributed SVD algorithm. The results are as follows:

score epochs lr reg nfactors biased

FCP 0.5597 500 0.00001 0.1 2 True

RMSE 7.8922 300 0.001 1.0 0 True

MAE 3.3526 500 0.001 0.1 75 True

Table 8.10: Results of grid search for SVD



49

To evaluate how the recommendation system was performing, the data was then tested

on the test set. The test set includes 30% of the data held out before training. The results were

as follows:

Score

FCP 0.5815

RMSE 9.8606

MAE 3.6845

Table 8.11: Results of test set performance for SVD algorithm

The test set results are similar to the baseline model, but the FCP of 0.581456 was

slightly lower than the baseline model.

Poisson Matrix Factorization

A grid search was completed for the Poisson Matrix Factorization. The results were as follows:

score epochs lr reg nfactors biased

FCP 0.5716 100 0.001 1.0 0 True

RMSE 6.3890 500 0.001 0.1 10 True

MAE 2.4637 100 0.001 0 1 False

Table 8.12: Results of grid search for SVD with Poisson Cost

The results of how well the best FCP model performed on the test set are as follows:

Score

FCP 0.5818

RMSE 9.6486

MAE 3.7101

Table 8.13: Results of test set performance for PMF

The FCP score for the PMF is slightly lower than the Baseline algorithm but slightly

higher than the SVD algorithm.
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Comparing the results of all algorithms,

FCP RMSE MAE

Constant 0.4826 11.9241 6.3980

Baseline 0.5982 9.5770 3.4836

SVD 0.5815 9.8606 3.6845

PMF 0.5818 9.6486 3.7101

Table 8.14: Results of all models

Comparing results, the Baseline Algorithm, according to the FCP measure, is perform-

ing the best of the four.

The same steps were repeated, but for the subset of data that included the 8 minimum

instead.

8.3 Filtered performance of 8 interactions

The same models were evaluated but instead of the full dataset, only the subset of data that

only included authors who have commented on 8 SubReddits and SubReddits with at least 8

commenters was used.

Constant Algorithm

Training and evaluating the Constant Algorithm on the subset of data yielded the following

results:

Score

FCP 0.4185

RMSE 14.0497

MAE 5.8809

Table 8.15: Results of filtered test set performance for Constant Algorithm

Baseline Algorithm

The baseline algorithm also does not utilize hyper parameters. Evaluating the Baseline Algo-

rithm on the testset yielded the following results:

The FCP score was higher than the Constant model.
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Score

FCP 0.6518

RMSE 12.6021

MAE 3.6221

Table 8.16: Results of filtered test set performance for Baseline Predictor

Gaussian Matrix Factorization

The SVD algorithm within Surprise utilizes hyper parameters, so a grid search was completed

for the normally distributed SVD algorithm. The results are as follows:

score epochs lr reg nfactors biased

FCP 0.5650 500 0.01 1.0 75 False

RMSE 6.3082 100 0.01 0 75 True

MAE 2.7632 500 0.01 0.1 75 True

Table 8.17: Results of grid search for SVD

To evaluate how the recommendation system was performing, the data was then tested

on the test set. The test set includes 30% of the data held out before training. The results were

as follows:

Score

FCP 0.5379

RMSE 12.7955

MAE 3.4222

Table 8.18: Results of test set performance for SVD algorithm

Poisson Matrix Factorization

A grid search was completed for the Poisson Matrix Factorization. The results were as follows:

The results of how well the best FCP model performed on the test set are as follows:

The FCP score for the Baseline Algorithm is the best-performing of all models.
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score epochs lr reg nfactors biased

FCP 0.5716 100 0.001 1.0 0 True

RMSE 6.5890 500 0.001 0.1 10 True

MAE 2.4637 100 0.001 0 1 False

Table 8.19: Results of grid search for SVD with Poisson Cost

Score

FCP 0.6234

RMSE 12.8825

MAE 4.9405

Table 8.20: Results of test set performance for PMF

Comparing the results of all algorithms,

FCP RMSE MAE

Constant 0.4185 14.0947 5.8809

Baseline 0.6513 12.6020 3.6221

SVD 0.5379 12.7955 3.4222

PMF 0.6234 12.8825 4.9405

Table 8.21: Results of all models

Comparing results, the Constant algorithm, according to the FCP measure, was per-

forming the best. But the PMF algorithm, according to the FCP score, is outperforming the

SVD algorithm, This shows that using SVD with a Poisson distribution, or PMF, improved the

accuracy of the recommendation system for the filtered dataset.



Chapter 9

Conclusion

9.1 Conclusion

Within this thesis, 4 algorithms for Recommendation Systems were built and evaluated using

3 different datasets. For the subset of data with 2 interactions, the best performing model

according to FCP was PMF, with a score of 0.5591. For the subset of data with 4 interactions,

the best performing model according to FCP was the Baseline model, with a score of 0.5982.

This is already an increase of score compared to the subset of data with 2 interactions. For the

subset of data with 8 interactions, the best performing model according to FCP was the Baseline

algorithm, with a score of 0.6513. These results suggest that narrowing data to only include the

most active Redditors and SubReddits increases the accuracy of the Reddit Recommendation

models.

The results suggest that the best model, according to FCP, was the Baseline algorithm

for the subset of data with 8 interactions. The highest score for Poisson Matrix Factorization,

was also for the subset of data with 8 interactions. These results suggest that using a subset of

data with 8 interactions results in Recommendation Algorithms that perform the best on test

data.
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9.2 Future Work

Future work may include adding an early stopping mechanism. This means that the algorithm

will stop learning if the cost is less than some tolerance to save time and combat over fitting.

This is widely utilized within advanced Python libraries such as Scikit-Learn. Adding this to

the Surprise Python Library, can decrease the amount of time needed to train a model.

In the Mathematical Prior Work Chapter, only Normal Priors were covered. Another

popular prior, Laplace or L1, is not included within the Surprise Library. Adding an option for

the users to choose the type of regularization increases the functionality of the library, and is

common within other Python libraries.

The Poisson Deviance and Chi-Squared statistic that was proposed can also be included

in future Surprise changes. These were added to the Surprise library but the statistics still need

to be fine-tuned for recommendation system purposes. Adding a proper, functional Poisson

Deviance and Chi-Squared statistic would help programmers understand their model and how

it is performing.

Other work may include using other types of distributions. This requires determining

how a rating is calculated, determining the update rules, and allowing a user to specify which

distribution their data follows.

9.3 Summary

This thesis proposed changes to the Surprise Python Library to take into account that data

follows a Poisson distribution. Making these changes helped increase the accuracy of predictions

for the Reddit TV Show dataset, and also proved that valuable recommendations can be made

for Reddit TV Show SubReddits. The thesis also tested the functionality of the Surprise library

normally distributed SVD and Poisson distributed SVD. This demonstrated that the existing

framework was performing as expected, and that the changes to the framework were both

accurate and did not impact the underlying algorithm.



Bibliography

[1] List of tv show subreddits. http://tv-SubReddits.wikidot.com/.

[2] Poisson regression. https://online.stat.psu.edu/stat501/lesson/15/15.4.

[3] P. H. Aditya, I. Budi, and Q. Munajat. A comparative analysis of memory-based and
model-based collaborative filtering on the implementation of recommender system for e-
commerce in Indonesia: A case study pt x. In 2016 International Conference on Advanced
Computer Science and Information Systems (ICACSIS), pages 303–308, 2016.

[4] Justin Basilico and Thomas Hofmann. Unifying collaborative and content-based filtering.
In Proceedings of the Twenty-First International Conference on Machine Learning, ICML
’04, page 9. Association for Computing Machinery, 2004.

[5] Poonam B.Thorat, R. Goudar, and Sunita Barve. Survey on collaborative filtering, content-
based filtering and hybrid recommendation system. International Journal of Computer
Applications, 110:31–36, 01 2015.

[6] Brian Dean. Reddit usage and growth statistics: How many people use reddit in 2021?
https://backlinko.com/reddit-users.

[7] CARLOS A. GOMEZ-URIBE and NEIL HUNT. The netflix recommender system: Algo-
rithms, business value, and innovation. ACM Transactions on Management Information
Systems, 6(13):13–19, 2015.

[8] Prem Gopalan, Jake M. Hofman, and David M. Blei. Scalable recommendation with
poisson factorization. CoRR, abs/1311.1704, 2013.

[9] Umair Javed, Kamran Shaukat, Ibrahim A. Hameed, Farhat Iqbal, Talha Mahboob Alam,
and Suhuai Luo. A review of content-based and context-based recommendation systems.
International Journal of Emerging Technologies in Learning, 16(03):25–26, 2021.

[10] Brian Keng. A probabilistic interprentation of regularization. https://bjlkeng.
github.io/posts/probabilistic-interpretation-of-regularization/,
2016.

[11] Y. Koren and J. Sill. Collaborative filtering on ordinal user feedback. In IJCAI, 2013.

[12] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for rec-
ommender systems. Computer, 42:30 – 37, 2009.

[13] Netflix. Netflix prize. https://www.netflixprize.com/.

[14] Python. About python. https://www.python.org/about/apps/.

55

http://tv-SubReddits.wikidot.com/
https://online.stat.psu.edu/stat501/lesson/15/15.4
https://backlinko.com/reddit-users
https://bjlkeng.github.io/posts/probabilistic-interpretation-of-regularization/
https://bjlkeng.github.io/posts/probabilistic-interpretation-of-regularization/
https://www.netflixprize.com/
https://www.python.org/about/apps/


56

[15] Elaine Rich. User modeling via stereotypes. COGNITIVE SCIENCE, 3:329–354, 1979.

[16] Tim Roughgarden and Gregory Valiant. Cs168: The modern algorithmic toolbox lec-
ture# 9: The singular value decomposition (svd) and low-rank matrix approximations.
http://theory. stanford. edu/˜ tim/s15/l/l9. pdf, 2015.

[17] Sebastian Ruder. An overview of gradient descent optimization algorithms. Insight Centre
for Data Analytics, 2016.

[18] Ruslan Salakhutdinov and Andriy Mnih. Probabilistic matrix factorization. NIPS, page
1257–1264, 2007.

[19] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Item-based collaborative
filtering recommendation algorithms. In Proceedings of the 10th International Conference
on World Wide Web, WWW ’01, page 285–295. Association for Computing Machinery,
2001.

[20] Duke University. Poisson regression and model checking. https://www2.
stat.duke.edu/courses/Fall17/sta521/knitr/Lec-9-Poisson-Checks/
predictive-checking.pdf, 2017.

[21] Wessel N. van Wieringen. Lecture notes on ridge regression. arXiv e-prints, sep 2015.

https://www2.stat.duke.edu/courses/Fall17/sta521/knitr/Lec-9-Poisson-Checks/predictive-checking.pdf
https://www2.stat.duke.edu/courses/Fall17/sta521/knitr/Lec-9-Poisson-Checks/predictive-checking.pdf
https://www2.stat.duke.edu/courses/Fall17/sta521/knitr/Lec-9-Poisson-Checks/predictive-checking.pdf


Appendices

57



Appendix A

Mathematical derivations

During the thesis there were several derivations that were summarized to reduce redundancies.
The equations are fully worked out below
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A.1 Derivation of Cost Function

Linear Regression

Given that
ŷ(i) = wTx (i) + b

For the Maximum Likelihood Estimate,

b̂, ŵ = L(b, w |y)

=
n∏
i=1

1

σ
√

2π
e−

(y(i)−ŷ(i))
2

2σ2

= log

(
n∏
i=1

1

σ
√

2π
e−

(y(i)−ŷ(i))
2

2σ2

)

=
n∑
i=1

log(
1

σ
√

2π
) + log(e−

(y(i)−ŷ(i))
2

2σ2 )

=
n∑
i=1

log(e−
(y(i)−ŷ(i))

2

2σ2 )

=
n∑
i=1

−
(
y(i) − ŷ(i)

)2
2σ2

Instead of maximizing −
(
y(i) − ŷ(i)

)2
we can instead minimize

(
y(i) − ŷ(i)

)2
, which fur-

ther simplifies to

=

n∑
i=1

(
y(i) − ŷ(i)

)2
2σ2

(A.1)

JSSE =
1

2σ2

n∑
i=1

(y(i) − ŷ(i))2 (A.2)

Poisson Regression

z(i) = wTx (i) + b

z(i) = log(λ(i))

x(i) = ez
(i)
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=
n∏
i=1

(
λ(i)
)y(i)

e−λ
(i)

y(i)!

= log

 n∏
i=1

(
λ(i)
)y(i)

e−λ
(i)

y(i)!


=

n∑
i=1

z(i)y(i) − λ(i) − log(y(i)!)

=

n∑
i=1

z(i)y(i) − λ(i)

JPoisson =

n∑
i=1

λ(i) − y(i) log λ(i)

A.2 Derivations for Priors

Normal

JL2 = − logP (θ)

= − log

 p∏
j=1

1

τ
√

2π
e−

(θj)
2

2τ2


= −

p∑
j=1

log

(
1

τ
√

2π

)
+ log

(
e−

(θj)
2

2τ2

)

= −
p∑
j=1

log

(
e−

(θj)
2

2τ2

)

JL2 =
1

2τ2

p∑
j=1

θ2
j (A.3)
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A.3 Posterior

J = JSSE + JL2

=
1

2σ2

 n∑
i=1

−
(
y(i) − ŷ(i)

)2
+

2σ2

2τ2

p∑
j=1

θ2
j


=

1

2σ2

 n∑
i=1

−
(
y(i) − ŷ(i)

)2
+
σ2

τ2

p∑
j=1

θ2
j


=

n∑
i=1

−
(
y(i) − ŷ(i)

)2
+
σ2

τ2

p∑
j=1

θ2
j

Therefore we can formally define

J =

n∑
i=1

−
(
y(i) − ŷ(i)

)2
+
σ2

τ2

p∑
j=1

θ2
j (A.4)

J (i) = −
(
y(i) − ŷ(i)

)2
+
σ2

τ2

p∑
j=1

θ2
j (A.5)

(A.6)

Instead of maximizing the negative sums, we can instead minimize the positive sums

= argmin
θ

n∑
i=1

(
y(i) − ŷ(i)

)2
+
σ2

τ2

p∑
j=1

θ2
j (A.7)

We can further simplify this equation in terms of regularization. Instead of stating
σ2

τ2
, which is the standard deviation of our output equation squared divided by the standard

deviation of our weights squared, we can give this a name of λ. Note that this is a different
variable and concept than the λ with poisson regression, giving us a final form of

= argmin
θ

n∑
i=1

(
y(i) − ŷ(i)

)2
+ λ

p∑
j=1

θ2
j (A.8)
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A.4 Proofs for SVD

b̂, ŵ = L(b, w |y)

= j = 1
n∏
i=1

1

σ
√

2π
e−

(y(i)−ŷ(i))
2

2σ2

= log

(
n∏
i=1

1

σ
√

2π
e−

(y(i)−ŷ(i))
2

2σ2

)

=
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i=1

log
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σ
√
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+ log e−

(y(i)−ŷ(i))
2

2σ2

=
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i=1

log e−
(y(i)−ŷ(i))

2

2σ2

=

n∑
i=1

−
(
y(i) − ŷ(i)

)2
2σ2
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